In a nutshell: The bracketed secant method

Given a continuous real-valued function f of a real variable defined on the interval $[a_0, b_0]$ where $f(a_0)$ and $f(b_0)$ have opposite signs and neither is zero, the intermediate-value theorem guarantees that there is a root on that interval. This algorithm uses iteration, bracketing, linear interpolation and solving a trivial linear equation to approximate the root. The intermediate-value theorem is used to guarantee the existence of the root.

Parameters:

- \mathcal{E}_{step} The maximum error in the value of the root cannot exceed this value.
- \mathcal{E}_{abs} The value of the function at the approximation of the root cannot exceed this value.

N The maximum number of iterations.

- 1. Let $k \leftarrow 0$.
- 2. If k > N, we have iterated N times, so stop and return signalling a failure to converge.
- 3. The next approximation to the root will be the root of the linear polynomial that interpolates the points $(a_k, f(a_k))$ and $(b_k, f(b_k))$.

Let
$$r_k \leftarrow a_k - f(a_k) \frac{b_k - a_k}{f(b_k) - f(a_k)}$$

- a. If $f(r_k) = 0$, we are done, and return m_k .
- b. If $f(r_k)$ and $f(a_k)$ have the same sign,
 - i. if $r_k a_k < \varepsilon_{\text{step}}$ and $|f(r_k)| < \varepsilon_{\text{abs}}$, return r_k ,
 - ii. otherwise, let $a_{k+1} \leftarrow r_k$ and $b_{k+1} \leftarrow b_k$;
- c. otherwise, $f(r_k)$ and $f(b_k)$ must have the same sign,
 - i. if $b_k r_k < \varepsilon_{\text{step}}$ and $|f(r_k)| < \varepsilon_{\text{abs}}$, return r_k ,
 - ii. otherwise, let $a_{k+1} \leftarrow a_k$ and $b_{k+1} \leftarrow r_k$.
- 4. Increment *k* and return to Step 2.

Convergence

As one end-point tends to become fixed (once the function is either strictly concave up or strictly concave down on the interval $[a_k, b_k]$, Thus, if *h* is the error, it can be show that the error decreases according to O(*h*).