In a nutshell: The bracketed secant method

Given a continuous real-valued function f of a real variable defined on the interval $\left[a_{0}, b_{0}\right]$ where $f\left(a_{0}\right)$ and $f\left(b_{0}\right)$ have opposite signs and neither is zero, the intermediate-value theorem guarantees that there is a root on that interval. This algorithm uses iteration, bracketing, linear interpolation and solving a trivial linear equation to approximate the root. The intermediate-value theorem is used to guarantee the existence of the root.

Parameters:

$\varepsilon_{\text {step }} \quad$ The maximum error in the value of the root cannot exceed this value.
$\varepsilon_{\mathrm{abs}} \quad$ The value of the function at the approximation of the root cannot exceed this value.
$N \quad$ The maximum number of iterations.

1. Let $k \leftarrow 0$.
2. If $k>N$, we have iterated N times, so stop and return signalling a failure to converge.
3. The next approximation to the root will be the root of the linear polynomial that interpolates the points $\left(a_{k}, f\left(a_{k}\right)\right)$ and $\left(b_{k}, f\left(b_{k}\right)\right)$.
Let $r_{k} \leftarrow a_{k}-f\left(a_{k}\right) \frac{b_{k}-a_{k}}{f\left(b_{k}\right)-f\left(a_{k}\right)}$.
a. If $f\left(r_{k}\right)=0$, we are done, and return m_{k}.
b. If $f\left(r_{k}\right)$ and $f\left(a_{k}\right)$ have the same sign,
i. if $r_{k}-a_{k}<\varepsilon_{\text {step }}$ and $\left|f\left(r_{k}\right)\right|<\varepsilon_{\text {abs }}$, return r_{k},
ii. otherwise, let $a_{k+1} \leftarrow r_{k}$ and $b_{k+1} \leftarrow b_{k}$;
c. otherwise, $f\left(r_{k}\right)$ and $f\left(b_{k}\right)$ must have the same sign,
i. if $b_{k}-r_{k}<\varepsilon_{\text {step }}$ and $\left|f\left(r_{k}\right)\right|<\varepsilon_{\text {abs }}$, return r_{k},
ii. otherwise, let $a_{k+1} \leftarrow a_{k}$ and $b_{k+1} \leftarrow r_{k}$.
4. Increment k and return to Step 2.

Convergence

As one end-point tends to become fixed (once the function is either strictly concave up or strictly concave down on the interval $\left[a_{k}, b_{k}\right]$, Thus, if h is the error, it can be show that the error decreases according to $\mathrm{O}(h)$.

